Solid-state 25Mg NMR spectroscopic and computational studies of organic compounds. square-pyramidal magnesium(II) ions in aqua(magnesium) phthalocyanine and chlorophyll a.

نویسندگان

  • Alan Wong
  • Ramsey Ida
  • Xin Mo
  • Zhehong Gan
  • Jennifer Poh
  • Gang Wu
چکیده

We report a solid-state (25)Mg NMR spectroscopic study of two magnesium-containing organic compounds: monopyridinated aqua(magnesium) phthalocyanine (MgPc.H(2)O.Py) and chlorophyll a (Chla). Each of these compounds contains a Mg(II) ion coordinating to four nitrogen atoms and a water molecule in a square-pyramidal geometry. Solid-state (25)Mg NMR spectra for MgPc.H(2)O.Py were obtained at 11.7 T (500 MHz for (1)H) for a (25)Mg-enriched sample (99.1% (25)Mg atom) using both Hahn-echo and quadrupole Carr-Purcell Meiboom-Gill (QCPMG) pulse sequences. Solid-state (25)Mg NMR spectra for Chla were recorded at (25)Mg natural abundance (10.1%) at 19.6 T (830 MHz for (1)H). The (25)Mg quadrupole parameters were determined from spectral analyses: MgPc.H(2)O.Py, C(Q) = 13.0 +/- 0.1 MHz and eta(Q) = 0.00 +/- 0.05; Chla, C(Q) = 12.9 +/- 0.1 MHz and eta(Q) = 1.00 +/- 0.05. This work represents the first time that Mg(II) ions in a square-pyramidal geometry have been characterized by solid-state (25)Mg NMR spectroscopy. Extensive quantum mechanical calculations for electric-field-gradient (EFG) and chemical shielding tensors were performed at restricted Hartee-Fock (RHF), density functional theory (DFT), and second-order Møller-Plesset perturbation theory (MP2) levels for both compounds. Computed (25)Mg nuclear quadrupole coupling constants at the RHF and MP2 levels show a reasonable basis-set convergence at the cc-pV5Z basis set (within 7% of the experimental value); however, B3LYP results display a drastic divergence beyond the cc-pVTZ basis set. A new crystal structure for MgPc.H(2)O.Py is also reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solid-state 25Mg NMR study of inner-sphere Mg2+ binding complexes.

Magnesium is one of the most abundant metal ions in cellular organisms. Like other alkali and alkaline metal ions (Na+, K+, and Ca2+), Mg2+ is involved in a wide variety of physiochemical activities necessary to sustain life.1 For instance, magnesium serves as a cofactor responsible for the biochemical transfer of phosphate-related enzymes.2 Mg2+ also occurs as an integral component in a number...

متن کامل

Solid-state 25Mg NMR, X-ray crystallographic, and quantum mechanical study of bis(pyridine)- (5,10,15,20-tetraphenylporphyrinato)magnesium(II)

We report solid-state 25Mg NMR, X-ray crystallographic, and quantum-mechanical calculation results for bis(pyridine)(5,10,15,20-tetraphenylporphyrinato)magnesium(II), Mg(TPP)·Py2. Mg(TPP)·Py2 crystallizes in the triclinic form, in the space group P1. The unit cell parameters are: a = 9.6139(13) Å, b = 11.0096(16) Å, c = 11.8656(15) Å; α = 102.063(3)°, β = 103.785(3)°, γ = 114.043(2)°; Z = 1. Th...

متن کامل

59Co solid-state NMR as a new probe for elucidating metal binding in polynucleotides.

Although magnesium fulfills several essential biochemical roles, direct studies on this ion are complicated by its unfavorable spectroscopic characteristics. This contribution explores the possibility of monitoring magnesium-nucleic acid binding via a combination of [Co(NH3)6]3+ as surrogate for [Mg(H2O)6]2+, and of high-resolution solid-state 59Co NMR as a spectroscopic probe. Such strategy qu...

متن کامل

Ab initio Study of Simple Mg-Ene Reactions of Propenyl Magnesium Halides and Ethylene (Type-I Intermolecular Reaction)

The insertion of an olefinic C=C bond into a metal-carbon bond is of potential interest as a preparativeroute to new products and as results of C-C coupling reactions to organic compounds. The allyl compoundsof Mg, react with an olefin by inversion of the allyl group via a six center transition state. These precyclicreactions may be one of the most important classes of organic reactions. The re...

متن کامل

Formation of a long-lived charge-separated state of a zinc phthalocyanine-perylenediimide dyad by complexation with magnesium ion.

Photoexcitation of a zinc phthalocyanine-perylenediimide (ZnPc-PDI) dyad affords the triplet excited state without the fluorescence emission, whereas addition of Mg2+ to the photoexcited ZnPc-PDI results in formation of a long-lived charge-separated state (ZnPc.+-PDI.-/Mg2+) in which PDI.- forms a complex with Mg2+.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 110 33  شماره 

صفحات  -

تاریخ انتشار 2006